摘要: |
从水面钻井平台与水下立管联合作业的安全角度出发,提出一种将钻井立管的力学响应限制特性引入水面平台动力定位闭环控制中的位置保持方法,实现水面钻井平台(或船舶)基于立管角度响应的动态定位。利用有限元方法建立包括立管系统质量、系统刚度、结构阻尼和水动力载荷在内的立管运动控制模型。联合水面浮体和水下立管的低频运动特性建立水面浮体运动偏移与水下立管顶端角度及末端角度的相对运动关系模型。在此基础上,设计基于立管运行响应的动力定位控位方法,实现对立管顶端角度及末端角度的安全控制。仿真结果表明,所提出的方法可行,在外界突变的环境载荷瞬时作用于水面浮体时,能更快地跟踪新的期望最优位置,保证钻井立管运行在安全界限内。 |
关键词: 动力定位 位置保持 钻井立管 钻井平台 |
DOI:DOI:10.14056/j.cnki.naoe.2017.02.002 |
分类号:P756.5;U674.38+1 |
基金项目:国家自然科学基金(51509193);浙江省自然科学基金(LQ15E090007) |
|
Modeling and Safety Control of Deepwater Drilling Riser Angles |
WANG Fang
|
(School of Mechanical Engineering, Hangzhou Dianzi University)
|
Abstract: |
From the aspect of safe operation in collaboration with the drilling platform above the water and the risers beneath, this study proposes a station keeping method which considers the mechanical response constraints of the drilling risers in the dynamic positioning close-loop control, so as to achieve the dynamic positioning of the surface drilling vessel or platform based on the riser angle responses. A control model is established for riser motion with finite element method, which includes riser system mass, system stiffness, structure damping and hydrodynamic loads. The relative motion model between the movement of the surface floating body and the top and end angles of the underwater riser is established depending on their low frequency motion characteristics. In this way, the dynamic positioning control method is designed according to the riser motion response, and the safety control of the top and end angles of the risers is realized. Simulation result shows that the proposed method is feasible. The surface floating body can track the new expected optimal position more rapidly in case there are transient external environmental loads, and thus to ensure the riser operation within safety limits. |
Key words: dynamic positioning station keeping drilling riser drilling platform |